
MODIS REPORT 1Q 94 NAS5-31362 V1.04 1

MODIS QUARTERLY REPORT
- MARCH 1995-

UNIVERSITY OF MIAMI
RSMAS/MPO

DR. ROBERT H. EVANS

NAS5-31362
===
Due to the interlocking nature of a number of projects, this and
subsequent reports will contain coding to reflect the funding source.
Modis funded activities are designated with an M , SeaWIFS with an
 S , and Pathfinder with a P . There are several major sections within
this report; Database, client/server, matchup database, and DSP
support.

A. NEAR TERM OBJECTIVES
B. OVERVIEW OF CURRENT PROGRESS
C. FUTURE ACTIVITIES
D. PROBLEMS

A. NEAR TERM OBJECTIVES

A.1 Modis Objectives (M)
A.1.1. Continue to develop and expand the processing
environment

a. increase computational efficiency through concurrent
 operations
b. determine and apply more efficient methods of data
 availability for processes

A.1.2. Begin extensive testing using global CZCS and AVHRR GAC
data with database processing to test the following:

a. algorithm capability
b. machine and operating system stability

MODIS REPORT 1Q 94 NAS5-31362 V1.04 2

c. functionality required for the processing and analysis
environment

A.2 SeaWIFS Objectives (S)
A.2.1. Continue testing of processing methodology.
A.2.2. Continue to develop relationship between database and in-
situ environment.

A.3 Pathfinder Objectives (P)
A.3.1. Expand matchup database as applicable.
A.3.2. Continue testing of methodology.
A.3.3 Train and integrate new personnel into Matchup Database
processing scheme.

A.4 DSP Objectives (M)
A.4.1. Continue testing of processing methodology.
A.4.2. Continue to expand the number of sites supported.
A.4.3. Expand the supported hardware/software platforms

B. OVERVIEW OF CURRENT PROGRESS

B.1 Automatic Processing Database (P)

B.1.1 Operational Testing

B1.1.1 January Operational Testing

Data for 1991 was now available on our new digital tape library
machine, so this was processed. A large number of new pieces of
equipment were added to the processing environment, and the
processing slowed while these were integrated into the processing.

A new 4-processor DEC 2100 computer was tested as the primary
processor, but numerous problems were encountered. Near the end
of the month, the processing was returned to the single-processor
alphas.

B.1.1.2 February Operational Testing

MODIS REPORT 1Q 94 NAS5-31362 V1.04 3

Processing continued on the 1991 time period, but was slow due to
sever disk and interface problems.

B.1.1.3 March Operational Testing

Processing continued in the 91 time range, covering 91160-91250,
using the yearly coefficients for the atmospheric correction. This
covered, for the first time, the post-Pinetubo time period. This
processing stream was terminated when it became clear that the
yearly coefficients were not producing acceptable results for this
period.

Processing was discontinued on modis, the 4-processor Sable, when it
became clear that disk controller problems were severe, and would
not allow continuous use during the processing. Processing was
returned to four single-processor Alphas.

Two more single-processor alphas were added to the stable of
machines processing orbits, totaling six. Subsequently, the pace of
the processing increased.

The time period 91001-91166 was recalculated, using the new
technique of monthly coefficients for the atmospheric correction step.

B.1.2 Development

B.1.2.1 January Development.

There were numerous changes, both small and large, to accommodate
the new equipment, which included a 4-processor DEC 2100
computer, a digital tape library (used both for spooling input data
and backup of output files), and a large amount of new disks.

However, the increase in capabilities also caused a commensurate
increase in system problems. In particular, the problems previously
encountered with "drop out" of NFS-mounted disks became
untenable when modis, the 4-processor Sable, was used for
processing. The most damaging point was the *.sh and *.dsp files
that are written by the VMS APServer and read by the UNIX
processor. While there had previously been occasional dropout at
this point, this step was failing 3-5% of the time. A new technique
was implemented, whereby the APServer writes the *.sh/*.dsp files
to a local disk, rshells a job to the processing computer, which

MODIS REPORT 1Q 94 NAS5-31362 V1.04 4

transfers the command files to one of its local disks. This method did
overcome the problems at this step.

Since the input data files will now be supplied by the DLT device
(digital tape library) on UNIX, a number of new procedures and
command files were developed to spool the data off, and copy it to
the VMS side.

As we develop experience with the new paradigm, more changes will
be needed. For example, modifications will be needed to eliminate
the need to copy the input file to the VMS disks. Currently, the
GETSCAN program extracts the scan lines of the pole crossings, and
stores this information in a flat file containing information for a
whole year for a given satellite. This scan line information is then
extracted from the flat file by the ADDREC program, which decides
the pieces to be processed, using the asc/dsc pole crossings, and a set
of rules for piece size. This information is used to add the processing
records to the database.

We are developing a version of GETSCAN that combines elements of
both the current GETSCAN and ADDREC. It uses the pole crossing
information to find the scan lines of the pole crossings, breaks the
pass up into a few pieces, and writes an ingester input file for each
piece.

To fuse the two systems, changes will need to be made to GETSCAN
and to ADDREC. Much of the functionality, exclusive of the actual
record addition, must be moved to GETSCAN, to eliminate the need
for a copy of the input file. These include

Extracting the exact ingester name corresponding to a scan line.
Incorporating the full set of rules to decides pieces.
Extract any other information from the datafile that is needed.

While the list is small, the information is not so easily defined. We
will need to pick through ADDREC a lot to make sure we are getting
all that we need, and only what we need.

Currently, the presence of the input file starts the GETSCAN/ADDREC
process. We will have the new GETSCAN put out one ASCII file that
contains the information needed for record addition. This file will be
rcp'd to the VMS input directory where its appearance will start the

MODIS REPORT 1Q 94 NAS5-31362 V1.04 5

ADDREC process. This file will be used by a new streamlined version
of ADDREC to add the processing records to the database.

Summary:

Current New

read asc/dsc file GETSCAN GETSCAN

find scan lines of pole crossings
GETSCAN GETSCAN

find filename of that scan line
GETSCAN GETSCAN

store scn ln/flnm of pole crossings
GETSCAN

read scan line/filename, pole crossing info
 ADDREC

decide on pieces to be created
ADDREC GETSCAN

store information on pieces
 GETSCAN

read information on pieces
ADDREC

add records to db ADDREC

These changes will be implemented in the next few months.

B.1.2.2 February Development

Most development work in this time period still related to the
integration of the new equipment, and modifying the processing
methods to both make best advantage of the new capabilities and to
overcome problems.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 6

Processing this month continued on the 4-processor Sable, modis, but
many more adjustments were needed.

File transfers using rcp were becoming unreliable, so the code and
command files will need to be changed to use ftp for file transfer.

A major revision of the command files and procedures is in progress.
These will be covered in the next month's report, when they are
complete.

B.1.2.3 March Development.

All file transfer was changed from rcp call to ftp.

There has been considerable consolidation and shortening of
commands.

Many of the commands can be issued from any computer - i.e., even
checking and control of the server status can be done from UNIX.

There used to be a large number of single-use command files - many
of these (but not all) have been consolidated into single command
files that interpret input parameters. These changes will be covered
in a separate section.

The new system will not seem much different. The major differences
OPERATIONALLY are changes in the daily and weekly job triggering,
changes in some directories, and changes in how mcp is started.

MCP:

The old need for different mcp binaries for each job type has been
eliminated. A single mcp is used, and the 'psa' command has been
modified to show the command line in the ps grid, showing which job
type is being run.

The mcp-t job, which ran the recipe called GAC_PTB, has been
changed to reflect its function - it is now mcp/orbit, and the recipe
name is GAC_ORBIT.

Previously, there were separate files to start each job or combination
of jobs (starti, startu1, startust, etc.). There is now one 'start'

MODIS REPORT 1Q 94 NAS5-31362 V1.04 7

command file that takes a single parameter, the type of jog or jobs to
start. Currently, the choices are:

Single: i, u1, s1, o, d, w

Combined: uso - u1, s1 & o
 us - u1 & s1

The start command file can be rsh'ed to the machine you want to
start from andrew.

DIRECTORIES

The pass_time and ascdsc files are now in a directory pointed to by
ap_etc, instead of mcp_etc. The ap_autoproc_computer_##.sh .dsp
and .rpt files, as well as the data transfer files for the record adder
now go into dsp_usr2:[ap.tmp.alexis]. (Or in
dsp_usr2:[ap.tmp.mariah] for the mariah system).

DAILY/WEEKLY TRIGGERING

Previously, when all passes for a given yearday were done, the daily
job for two days before was triggered. This permitted daily jobs to
run before all passes for that day were processed, causing stray
orbits to pop up at times.

The new triggering is:

Daily:
When each orbit is done, the server checks to see if that day is

complete. If not, no triggering occurs. If complete, then:

Three day periods are checked to see if a daily job is ready.

 For example, say day n has just been completed:

Check if day n-1 is done. If so, check if day n-2 is done. If n,
n-1 and n-2 are done, trigger daily for n-1.

Check if day n+1 is done. If so, check if day n+2 is done. If n,
n+1 and n+2 are done, trigger daily for n+1.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 8

Days n-1 and n+1 were checked. If n-1, n and n+1 are all done,
trigger daily for day n.

Weekly:

When a daily completes, the server checks to see if all days of
that week are done. If true, the weekly1 job is triggered.

When the weekly1 job is done, the server checks to see if the
previous and following weeks are done. If so, the weekly2 job
is triggered.

Completion of the weekly2 job triggers the weeky3 job, which
is allowed to run only on the machine servicing the volume set
for that week.

Completion of the weekly3 job triggers the weekly4 job.

VMS Commands

The old way to start the VMS batch jobs has been shortened a bit.
The old '@ap_com:submit_apserver' command has been replaced by a
simple 'apserver'.

All the new commands to start UNIX are:

$ apserver (was: @ap_com:submit_apserver)
$ addrecgac (was: @ap_com:submit_addrecgac)
$ getscangac (was: @ap_com:submit_getscangac)
$ fixscangac (was: @ap_com:submit_fixscangac)
$ mvgetscan (was: @ap_com:submit_mvgetscan)

Also as before, the MCP control is in the dbrequest_* and run_*
logicals, with the DBREQUEST_STATUS controlling the mcps from all
processing machines., and the RUN_abrv controlling the mcps from a
single machine (ie, RUN_KEL controls KELSO).

However, now a single command file, 'mcp.com', can manipulate both
the dbrequest_* and run_* logicals. An input of 'mcp' will list while
'mcp ?' provides a short explanation. To change the global value,
input the change as the first input parameter. (To stop mcp's , say
'mcp stop'.) To change the values for only one computer, then use
'mcp option computer'. You can use either the full computer name or

MODIS REPORT 1Q 94 NAS5-31362 V1.04 9

an "accepted" abbreviation. (The "accepted abbreviations are listed
in the db loading file ap_dbdef:computer_load.sql. This file can be
found AFTER invoking the home:ap_build.com command file, which
defines the directories for the db and server.)

For checking the db records, there are still a number of *.sql files
that can be used inside sql, or are called by a DCL command file.
However, they are all called by a single command file, ck.com, which
also has a symbol defined, so that from ANY directory, you simple
invoke ck and input a parameter. This ck command file first checks
to see if the parameter is one of it's "known" commands. If it is, ck
calls the right command file in sql. If the input parameter is not
recognized as a command, it is assumed to be the name or
abbreviation of a computer, and the jobs assigned to that computer
are checked.

The queries that are recognized are:

MAINLINK (can input a main_link, or be prompted)
DAILY
DSPA
EXE
INIT
ORBIT
ORBIN (BOTH ORBIT AND INIT)
SUB
HSUB
UNF
WEEKLY
WEEKLY1 or W1
WEEKLY2 or W2
WEEKLY3 or W3
WEEKLY4 or W4
FOURWK or FW
WEEKLYSUB

Note that the MAINLINK query can take a main_link as the second
input parameter, but that ck prompts for it if omitted from the
command line.

VMS/UNIX CROSSOVER

MODIS REPORT 1Q 94 NAS5-31362 V1.04 10

Both mcp and ck can be issued from any UNIX machine, as well as on
the VMS server. The "mcp" command is just passed directly to the
server machine. However, there are a number of "ck"-type
commands that are also performed on the UNIX side, and these are
tried first, then the ck command is passed to the VMS server if the
UNIX command file does not recognize the input parameter.

UNIX Commands

The UNIX command files are now located a /usr/dsp/com2 directory
(just as the executables are in /usr/dsp/bin2). The pathgac* ,
ingest and rcp_control.sh files are used by the processing, not
interactively. The ap.defs files just set up the environmental
variables for the processing. So, that leaves just three files:

exa - runs the full examine on an image (to retrieved full
header)

start - starts the processing on various machines

ck - performs various kinds of checks

The strt command file should take two parameters: the type or
types ofmcps to start, and the computer to start them on. The
remote start is not quite working. The type(s) of mcps to start are:

u1 s1 o I d
w1 w2 w3 w4 fw ew
u2 u3 u4 s2
us uso ii iii
3uso 4uso 4u2so usoii usoiii

The ck command file checks for a number of options on the UNIX
side. If the command is not recognized as one it knows, it passes the
whole command line to the VMS side.

Processing Overview

The input dataset consists of a stream of datafiles representing
orbits of a satellite. The satellite circles the earth in about 100
minutes. As it circles, the earth turns beneath it, so that the edges of
succeeding orbit overlap slightly. In addition, each orbit is recorded

MODIS REPORT 1Q 94 NAS5-31362 V1.04 11

by one of two data recorders; one is started (ideally) shortly before
the other finishes, so that the end of one orbit overlaps slightly with
the beginning of the next orbit.

After about 14 orbits, the earth has rotated once (ie, one day has
passed). This means that the satellite has taken data over the entire
earth TWICE, once on an ascending (south to north) leg and once on a
descending (north to south) leg. For the NOAA polar orbiters, the
ascending leg corresponds to daytime and the descending to night.

On the archive device, these data files are stored in increments of a
yearday (the first five digits of the filename), and the various jobs
that store, retrieve and access the data are usually organized in the
manner. To date, this has been the most convenient arrangement,
with one day's worth of data fitting comfortably on the staging disks
while still "occupying" the processing streams.

The processing scheme can be though of as addressing a number of
tasks, which can be sorted into characteristic elements defined by
the input data. In the AVHRR GAC processing, the tasks and their
data elements are:

 Task Increment Components
 1. Spooling data yearday 14 orbits
 2. Autoproc entry orbit self-contained
 3. Ingest/atmospheric corr/ orbit6 pieces of orbit
 4. Spacebin orbit 6 pieces "
 5. Orbit orbit 6 pieces "
 6. Daily 3 yeardays 14*3 orbits
 7. Weekly1 1 week 7 daily files
 8. Weekly2 3 weeks 3 weekly files
 9. Weekly3 1 week weekly reference file
10. Weekly4 1 week cloud-masked files

1. Spooling data: This job acts as a daemon, checking to see if
files are needed, and that disk space is available. If so, it copies one
day's work of files from one device to another. Most of the spooling
jobs are submitted once and recycle in increments of one day.

2. Autoproc entry: This job notifies the db that a data file
exists and is ready for processing. It deals with a single file at a
time.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 12

3,4, Ingest/atmospheric correction and spacebin: These jobs
work on individual pieces from a single orbit file. They can be
thought of as a set of tasks that must be performed in sequence to a
single piece. The tasks are separated to enable a degree of
overlapped processing, that is, one piece is being ingested while the
last piece that was ingested is begin atmospherically corrected, and
the piece just corrected is being spacebined. (See short section later
for explanation of each of these steps.)

5. Orbit: When all pieces of an orbit file have been finished
(through spacebinning) a job is run that gathers the pieces into
single files for transfer to a remote disk. This consolidation produces
(usually) one ascending and one descending file for the given
yearday, plus POSSIBLY a third file with data to be included in either
the previous or next day. (Omitting the long explanation, the way a
"data-day" is defined may result with data from the same piece of a
pass being put into different "days".

6. Daily: : When all orbits or segments of orbits due to the
data-day definition of a given yearday file have completed
processing (through orbit), a job is run that gathers the pieces into
single files for transfer to a remote disk. This consolidation produces
(usually) one ascending and one descending file for the given
yearday

7. Weekly1: When all seven days of a give week have been
created, the ascending and descending data are combined into
weekly asc and dsc files.

8. Weekly2: When the weekly files for three weeks in
succession have been created, these are combined into 3-week asc
and dsc files, and these files are run through a gap-fill program to
eliminate cloudy areas. These are called the asc and dsc reference
files for the middle week of that three-week period.

9. Weekly3 & 4: After the reference files for a given week
have been produced, these are used to cloud-mask each daily file for
that week (asc ref used on asc dailies, dsc on dsc dailies). The cloud-
masked daily files are then recombined into cloud-masked weekly
files, and a large number of product files are extracted from the daily
and weekly declouded files.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 13

Ingest/AtCor/Spacebin: Ingest refers to the process of extracting a
part of an input orbit and storing it in a dsp-format file, including the
navigation from the orbit file itself. After ingest, a series of
procedures is run on the ingested file to apply various corrections to
the navigation (this is called the sector process, which is actually a
series of processes). No new file is produced in the sector process.
The atmospheric correction part takes the input data (radiance in
five different spectral bands) and produces an SST estimate at each
point in the input ingest file. These files are still at the 4 km
resolution, and are in what is called "satellite perspective", ie, the
successive scan lines. The spacebin job takes the input satellite
perspective data and bins it into a global 9 km equal area grid. Note
that these files contain entries only for bins with data. Successive
jobs combine or treat the data using these bins.

- -
Simplifications in the schema are planned, particularly in the recipes
(use a single table) and main/pc records (elimination of extraneous
fields).
- -

There are three sets of table in the processing database. One set
contains three tables that store information on the processing,
defining the steps and what is to be done in each of the steps.
Another set has two tables that track each of the processing entities
and the jobs associated with them, and a third set contains various
tables that provide ancillary information for definition and validation
purposes.

These types contain these tables:

PROCESSING RECIPE TABLES:

RECIPES
PROCESS_STEPS
PARAMETERS

JOB ENTRY TABLES:

MAIN
PROCESS_CONTROL

MISC. DB TABLES

MODIS REPORT 1Q 94 NAS5-31362 V1.04 14

BOOK_KEEP
COMPUTERS
DAYINFO
SATELLITES
SATSEN
SENSORS
USER_GROUP
WEEKINFO

Obsolete tables: ARCHIVE, ARCH_INFO, CHANNEL, FORMAT,
INGEST_ERROR, LASER_FILE, LOCALDIRS, MEDIUM, PC_COMPLETE,
PROCESS_ERROR, PROJECT, RAW_DATA, SOURCE, STATION,
TRANSMISSION

--- -

PROCESSING RECIPE TABLES -
RECIPES/PROCESS_STEPS/PARAMETERS:

There are three tables that are used to define the processing stream:
the RECIPES table, the PROCESS_STEPS table and the PARAMETERS
table. (Future implementations will combine these into either one or
two tables.) The RECIPES table contains an entry for each integral
step in the processing stream. That is to say, a RECIPE defines a step
or set of steps that are to be performed as a unit. The
PROCESS_STEPS table contains a set of entries for each RECIPE,
defining the processing steps, and the order in which they are to be
performed. The PARAMETERS table provides additional definitions
that may be used in the PROCESS_STEPS table.

RECIPES Table:

A processing RECIPE may contain more than one processing step.
The steps defined by a RECIPE are to be performed as a unit, without
interruption, and the results of the processing transmitted to the
processing db at the end. The fields of the RECIPE table are used to
assign characteristics and control some aspects of the job triggering.
The fields are:

 Table RECIPES
 recipe_code Code number for keyword retrieval
 recipe Recipe name

MODIS REPORT 1Q 94 NAS5-31362 V1.04 15

 def_priority Default priority to assign to procedure
 process_class All jobs with the same "svctype"
 computer_classWhen one job is assigned to a computer, all

related jobs are as well
 trigger_class Trigger_class of this recipe
 class_to_trigger Trigger_class to trigger when present work is

completed

Values for these fields are:

CD RECIPE PRI PROCESS_CLS COMPUTER_CLS TRIGGER_CLS CLS_TO_TRIGGER
1 'GAC_INIT 1 'INIT' 'INGATSB' 'INIT' 'INGATCOR'
2 'GAC_INGATCOR' 1 'UNLIMITED' 'INGATSB' 'INGATCOR' 'NONE'
3 'GAC_SPACEBIN' 1 'SBIN' 'INGATSB' 'SINGLEREC' 'TIMEBIN'
4 'GAC_ORBIT' 1 'ORBIT' 'INGATSB' 'TIMEBIN' 'DAILY'
5 'GAC_DAILY' 1 'DAILY' 'WEEKLY' 'DAILY' 'NONE'
6 'GAC_WEEKLY1' 1 'WEEKLY1' 'WEEKLY' 'WEEKLY1' 'WEEKLY2'

The process_class field refers to the job type. That is, when mcp
requests a job, it requests a job with a particular process_class. This
was originally intended to be used if one mcp would be allowed to
run different types of jobs, but has operationally become limited to a
single type of job for each mcp. In the example, there are six
different process_classes representing five mcp types: mcp-i, mcp-
u1, mcp-s1, mcp-o, mcp-d and mcp-w1.

The computer_class is used to control which computer performs the
processing. For example, the processing of a single orbit should all
occur on the same computer, as the input file must be copied to a
local disk, and this should be done only once. So, when an orbit is
assigned to a computer, all tasks with the "INGATSB" computer class
will only be run on that computer. In the example, when the INIT
job is assigned to a particular computer, all other jobs with the same
computer_class (INGATCOR, SPACEBIN and ORBIT) are also assigned
to that computer.

The trigger_class and class_to_trigger fields are used in the
triggering of follow-on jobs. When a job completes successfully, the
process_status for that collection of jobs (ie, all process_control
records with the main_link) is checked. If there are no submitted or
aborted jobs, then the "class_to_trigger" field is checked for the
recipe just completed. If it is "NONE" no triggering of this type is

MODIS REPORT 1Q 94 NAS5-31362 V1.04 16

performed; otherwise, all records with the specified trigger_class are
submitted for processing. In the example, when the INIT job
completes, all INGATCOR jobs for that orbit will be submitted for
processing.

PROCESS_STEPS Table

This table set the information retrieval, workspace definition, and
command files to be run, and their order, for each recipe to be used
in a processing stream. The fields of the PROCESS_STEPS table are:

! RECIPE Steps are assigned to this procedure
! process_step Process step number
! command Command to execute
! jump Jump to this step if appropriate

Each recipe will have a number of steps defined for it.

 RECIPE PROCESS_STEP COMMAND JUM
P

 'GAC_INIT' 1 'NAME_MAKE' 0
 'GAC_INIT', 2 'pathgac_init', 0

'GAC_INGATCOR
'

1 'NAME_MAKE' 0

'GAC_INGATCOR
'

2 _WEEKINFO' 0

'GAC_INGATCOR
'

3 'SET_INGEST 0

'GAC_INGATCOR
'

4 'WSO:nlmc' 0

'GAC_INGATCOR
'

5 'pathgac_ingatc
or'

0

There are three types of things that can be defined in a step.

1: Certain commands (such at SET_INGEST or GET_ASCDSC) direct the
server to retrieve information from the database, and write out
workspace variables.
(Examples: Steps 1 in GAC_INIT and 1-3 in GAC_INGATCOR above.)

MODIS REPORT 1Q 94 NAS5-31362 V1.04 17

2: A command may be simply the name of a dsp command file to
execute.
(Examples: Steps 2 in GAC_INIT and 5 in GAC_INGATCOR above.)

3: A step can be used in conjunction with the PARAMETERS TABLE to
assign a particular value to a workspace variable. (Example: Step 4 in
GAC_INGATCOR above - see also PARAMETERS below.)

PARAMETERS Table

The PARAMETERS table contains three fields:

 command command for which variable is defined
 work_space workspace variable to define
 data_value value to assign to variable

and sample values are:

COMMAND WORK_SPACE DATA_VALUE
'WSO:nlc 'SSTTYPE' 'nlc'

'WSO:nlsst' 'SSTTYPE 'nlsst'
'WSO:nlmc' 'SSTTYPE' 'nlmc'

In the PROCESS_STEPS example, step 4 in GAC_INGATCOR is
requesting that a workspace variable, 'SSTTYPE', be assigned a value
of 'nlmc' before the dsp command procedure 'pathgac_ingatcor.dsp' is
run.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 18

JOB ENTRY TABLES:

- -

MAIN Table

This table tracks the "entities" that require processing. There is one
entry for each "class" of jobs that need to be run. For example, there
is one record for each satellite orbit to be processed, and the
file_name is the input orbit file name. There is another entry for all
jobs that need to be run on a daily basis (ie, jobs that produce files
in increments of one day), and another for weekly jobs, etc. The file
names of these are yyddd, yyww, etc.,

There will be at least one record in the PROCESS_CONTROL table for
each record in the MAIN table. If multiple jobs are to be run on the
same "entity", there will be one PROCESS_CONTROL record for each
job.

 Field Comment
 ---------------- -------------------------------------
 record Main record number
 file_name Link to several relations
 file_number File number on archive medium
 raw_data_link Link to RAW_DATA table
 archive Validate with ARCHIVE table
 archive_label Link to ARCH_INFO table
 format Validate with FORMAT table
 satsen_code sat/sen code number
 satellite Type of satellite - validate with SATELLITE

table
 sensor Type of sensor - validate with SENSOR table
 transmission Transmission - validate with TRANSMISSION
table
 channel Channels in input file - validate with

CHANNEL table
 orbit Satellite orbit number
 pass_time Timestamp at beginning of pass
 pass_end Time of last scan line in the pass
 yearday Yearday of file
 scans Number of scan lines in scene
 miss_scan Number of missing scan lines in scene

MODIS REPORT 1Q 94 NAS5-31362 V1.04 19

 source Data source - validate with SOURCE table
 project Project - validate with PROJECT table
 release_link Main record to notify upon completion
 release_recs No. of release_recs this is waiting for
 release_done No. of release_recs done
 process_recs No. of process_control recs for this entity
 process_done No. of process_control records completed
 map Bitmap of 10 X 10 degree coverage
 QC_status Status of quality control
 who_code Who modified; Validate with USER_GROUP

table
 last_mod Date of last record modification
 audit Date of record creation

--- -

PROCESS_CONTROL Table

This table stores information on individual jobs through the
automatic processing system.

 Field Comment
 ---------------- -------------------------------------
 record Internal record number of file to process
 main_link Link to MAIN relation
 recipe RECIPE to be executed

Validate with RECIPE table
 process_step Last process_step completed (obsolete)
 satsen_code
 satellite Validate with SATELLITE table
 sensor Validate with SENSOR table
 computer Computer assigned to process this PCR; Validate

 with COMPUTER table
 computer_classUsed to restrict jobs to one computer
 process_status Is the job in HOLD, SUBmitted, FINished or

DSPAbort status
 process_class MCP-type class of this job
 rec_to_trigger PC Record to trigger when this completes

if zero, this is triggered by another
if -1, neither triggers nor is triggered

 trigger_class The trigger_class of this job
 class_to_trigger The class to be triggered when this class has

completed

MODIS REPORT 1Q 94 NAS5-31362 V1.04 20

 priority Priority to assign to job
 totscan Total scans in WHOLE SCENE
 begscan Beginning scan line of this piece
 endscan Ending scan line of this piece
 yearday Yearday from MAIN_LINK's input file
 miscinfo Miscellaneous information (varies)
 source_file Output file for this PCR.
 source_directory Directory of input file.
 who_code Validate with USER_GROUP table
 last_mod last record modification
 audit record creation

--- -

MISC. DB TABLES

BOOK_KEEP Table

The BOOK_KEEP table is a special-purpose table used to keep track of
the current number of entries in those tables that are permitted to
"grow. The three fields in the BOOK_KEEP table are:

 record record number in this table
 relation_name name of relation
 max_record current number of records

and INITIAL entries are:

 RECORD RELATION_NAME MAX_RECORD
 1 'BOOK_KEEP 4
 2 'RAW_DATA' 0
 3 'MAIN' 0
 4 'PROCESS_CONTROL' 0

The BOOK_KEEP entry has an initial value of 4 because four tables are
currently used in this manner - the three "data" tables and
BOOK_KEEP itself.

When a new entry is added to any of these tables, the BOOK_KEEP
value for MAX_RECORD for that table is first incremented, then that
value assigned as the record number for that table. This is the
APServer's method of assigning distinct record numbers to these
tables.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 21

COMPUTERS Table

The COMPUTERS table is used to validate computer names using the
APServer system, and to provide information about them. The fields
in the COMPUTERS TABLE are:

 Field Comment
 ---------------- -------------------------------------
 computer Valid keyword value
 abbrv Abbreviation
 os Operating system
 site Location of computer
 *The following fields are not currently being used.
 run_status Running status of computer (run, pause,

finish, stop)
 alarm_status Whether the start/stop alarm is to be used

(n/y)
 alarm_start When to begin processing (hhmm) (LOCAL

time)
 alarm_mcps Which mcps to start (list of start files, sep by

comma)
 alarm_stop When to finish up processing (hhmm) (LOCAL

time)

and typical entries are:

COMPUTER ABBRV OS SITE
MARIAH mar VMS RSMAS
andrew and UNIX RSMAS
enuka enu UNIX RSMAS

There are also a number of fields that have not yet been
implemented, that will be used to automatically start and stop
processing on a given machine.

- -

DAYINFO Table

This table is used to define the start the ascending and descending
data-days for each satellite. This table also assigns a week to each
day (which can be defined separately by satellite). The fields are:

MODIS REPORT 1Q 94 NAS5-31362 V1.04 22

 Field Comment
 ---------------- -
 yearday yearday
 satsen_code sat/sen code number
 week Week to which this day is assigned
 asc_beg Beginning of day for ascending data
 dsc_beg Beginning of day for descending data

and typical entries are:

 SATSEN_ SATSEN_
YRDAY WEEK DSC_BEG YRDAY WEEK DSC_BEG

 CODE ASC_BEG CODE ASC_BEG
 88308 1 8845 88308011124 88307135119 88308 2 8845 88308044643 88307...
 88309 1 8845 88309010320 88308134417 88309 2 8845 88309043751 88308...
 88310 1 8845 88310021038 88309133721 88310 2 8845 88310042925 88309...
 88311 1 8845 88311020251 88310133021 88311 2 8845 88311042123 88310...
 88312 1 8845 88312015525 88311132309 88312 2 8845 88312041338 88311...
 88313 1 8845 88313014817 88312131539 88313 2 8845 88313040558 88312...
 88314 1 8845 88314014120 88313130747 88314 2 8845 88314035812 88313...
 88315 1 8846 88315013424 88314141507 88315 2 8846 88315035008 88314...
 88316 1 8846 88316012720 88315140707 88316 2 8846 88316034139 88315...
 88317 1 8846 88317012000 88316135929 88317 2 8846 88317044825 88316...
 88318 1 8846 88318011220 88317135211 88318 2 8846 88318043931 88317...
 88319 1 8846 88319010417 88318134508 88319 2 8846 88319043103 88318...
 88320 1 8846 88320021135 88319133811 88320 2 8846 88320042300 88319...
 88321 1 8846 88321020345 88320133112 88321 2 8846 88321041514 88320...

Entries need only be made for a particular satellite for the life of that
satellite, not for all days defined in the table.

- -

SATELLITES Table

This table is used to validate satellite names and store associated
data. The fields are:

 Field Comment
 ---------------- -------------------------------------
 satellite satellite name
 extensionfile extension for ingested files
 sat_id NORAD satellite number
 prefix prefix for processed files

MODIS REPORT 1Q 94 NAS5-31362 V1.04 23

and typical entries are:

SATELLITE EXTENSION SAT_ID PREFIX
'NOAA-9' ,'NO9' 15427 'K'

'NOAA-10' 'N10' 16969 'J'

The SATELLITES table is linked to the SENSORS table by the
SATSEN_CODE table.

- -

SENSORS Table

This table is used to validate satellite sensors.

 Field Comment
 ------------ -------------------------------------
 sensor Valid keyword value

-- -
SENSOR

'AVHRR' 'HIRS2 'MSU' 'SR 'VHRR'
CZCS 'DCS' 'ALT' 'HCMR' 'MSS'
'OLS' 'SAR' 'SCAT 'SMMR' 'TM'
'VAS' 'VIR' 'VISSR' 'SEAWIFS'

- -

SATSEN Table

This table is used to validate satellite/sensor combinations, and
assign a specific code to each pair. It is used to link the SATELLITES
and SENSORS tables.

 Field Comment
 ---------------- -------------------------------------
 satsen_code sat/sen code number
 satellite satellite name
 sensor sensor name

SATSEN
 _CODE SATELLITE SENSOR

MODIS REPORT 1Q 94 NAS5-31362 V1.04 24

 1 ' NOAA-11' 'AVHRR'
 2 ' NOAA-9' 'AVHRR'

-- -

USER_GROUP Table

This table is used to validate members of the user USER_GROUP.

 Field Comment
 ---------------- -------------------------------------
 code Code number for keyword retrieval
 user_name Computer user_name ID
 full_name Users' full name
 telephone Phone
 site Where the user is
 email_address E-mail address
 telemail_address TELEMAIL address

-- -

Note: The autoprocessing interface automatically loads the
USER_NAME into this table when a new user first runs the system.
All other information (full name, site, etc.,) must be loaded
separately.

 Code User_Name Full_Name Telephone Site
 ---- --------- --------------------- ------------ --------
 0. UNDEFINED
 1. VICKI VICKI M. HALLIWELL 305-361-4178 RSMAS
 - - ---

Code
 User_Name email_address telemail_address
 ---- --------- ---------------------------- -----------------
1. VICKI vicki@miami.rsmas.miami.edu NONE

--- -

WEEKINFO Table

This table is used to define the 4-week and 8-week time periods, and
the directory for the daily files for each week.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 25

 Field Comment
 ---------------- -------------------------------------
 week The week
 fourwk The 4-week interval for this week
 eightwk The 8-week interval for this week
 wkdir Directory for the daily files by week

--- -
- - - -
WEEK FOUR EIGHT WKDIR WEEK FOUR EIGHT WKDIR

 WK WK WK WK
 0 104 108 '/(disk)/wk/wk01' 27 2528 2532 '/(disk)/wk/wk27'
 1 104 108 '/(disk)/wk/wk01' 28 2528 2532 '/(disk)/wk/wk28'
 2 104 108 '/(disk)/wk/wk02' 29 2932 2532 '/(disk)/wk/wk29'
 3 104 108 '/(disk)/wk/wk03' 30 2932 2532 '/(disk)/wk/wk30'

...(entries omitted)

 24 2124 1724 '/(disk)/wk/wk24' 51 4952 4952 '/(disk)/wk/wk51'
 25 2528 2532 '/(disk)/wk/wk25' 52 4952 4952 '/(disk)/wk/wk52'
 26 2528 2532 '/(disk)/wk/wk26' 53 4952 4952 '/(disk)/wk/wk52'

- -

The following tables are currently included in the processing
database, but provide no function, and will be eliminated or moved
to other dbs in the future.

ARCHIVE
ARCH_INFO
CHANNEL
FORMAT
INGEST_ERROR
LASER_FILE
localdirs
MEDIUM
PC_COMPLETE
PROCESS_ERROR
PROJECT
RAW_DATA
SOURCE
STATION
TRANSMISSION
TRIGGERING.INFO`---|

MODIS REPORT 1Q 94 NAS5-31362 V1.04 26

The triggering is in the db_report subroutine.

1. When the end of a job is reported to the database, the value
of "status" and the existence of an error message is checked. If
either of these indicate an error, then the process_status for that
process_control record is set to 'dspa', and no triggering occurs.
Otherwise, process_status is set to 'fin', and the triggering is tested.

2. If the rec_to_trigger for this process_control record is
greater than zero, it is marked 'sub' (submitted for processing).

Example - Completion of Ingatcor triggers Spacebin:

record recipe file rec_to_trigger

1001 Ingatcor 90123123456.data 1002
1002 Spacebin 90123123456.data -1

The completion of record 1001 will trigger the submission of record
1002.

3. If the rec_to_trigger is less than 1, the "class_to_trigger" for
that record is checked. If it is "none", no further class triggering is
done. Otherwise, the process_control records for that main record
are checked. If any records are marked 'sub' or 'exe, no triggering
occurs. Otherwise, all process_control records associated with that
main record with the matching trigger_class are submitted for
processing.

Example - Completion of Init triggers multiple Ingatcors:

record recipe trigger_class class_to_trigger

1000 Init Init Ingatcor
1001 Ingatcor Inhgatcor None
1003 Ingatcor Inhgatcor None
1005 Ingatcor Inhgatcor None
1007 Ingatcor Inhgatcor None
1009 Ingatcor Inhgatcor None
1011 Ingatcor Inhgatcor None

MODIS REPORT 1Q 94 NAS5-31362 V1.04 27

When the Init job complete, all six of the Ingatcor jobs will be
submitted.

Three special cases:

1. If the process_class is "orbit", the orbits for that yearday are
checked. If any are unfinished, no triggering occurs. If all are
finished, the previous and succeeding days are checked. If all are
finished, then the rec_to_trigger of the middle day is submitted. The
previous and succeeding three-day periods are also checked if
needed.

2. If the process_class is "daily", all the daily jobs for that
week are checked. If any are unfinished, no triggering occurs. If all
seven days for that week are done, then the first weekly job
(WEEKLY1) is submitted.

3. If the process_class is "weekly2", the "weekly1" jobs for that
week, the previous week and the succeeding week are checked. If
any are unfinished, no triggering occurs. If all are finished, then the
rec_to_trigger for the middle week is submitted. The previous and
succeeding 3-week periods are also checked.

B.2 Client/Server Status (S)

The following functionality was added to the client/server
environment during this quarter.

1. The ap program was used to process AVHRR data. About 80 days
of data was processed using the modified program. This was done
when weekly products were first automated to be processed by ap.
Prior to this modification, all the weekly products had been done
manually

2. A data processor, similar to ap but simpler was written. As part of
this effort, the frame for shell scripts is finished. ap is complicated,
especially the client-server communication mechanism. All the
communication depends heavily on the robustness of the network
software. This makes ap somewhat vulnerable in a sense that its
robustness is measured by the weakest link in the network software
and its own traffic handling ability. So a simpler system would be
more desirable, one that can be easily maintained and easily adapt to
different data processing jobs.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 28

3. A scan program was written which scans Tiros data files and
gathers the necessary information for later use as part of the
automatic processing. This program scans the incoming data file and
prepares the input control files for ingester. This is an important step
in the AVHRR data processing. In ap, it is done on the VMS side while
all the other processing activities are on UNIX side. A UNIX version of
scan program could shorten the processing path and make the whole
process more efficient.

4. The software interface for ap and DLT tape library was rewritten.
The use of new coefficients to process AVHRR data and to
accommodate a new, unforeseen addition caused the interface
between ap and DLT tape library to be modified.

5. An effort is underway to write an orbital data processor; the
processor is partially tested. Bob instructed that a new data
processing system should be written with Warner providing design
guidance. As a result of the design meetings, an independent orbit
data processor is being written that could make ap more efficient.

B.3 Matchup Database (P)

B.3.1 1st Quarter Matchup Activities

During this period, AVHRR in-situ matchups were completed for the
period 1985–1993. This covers the NOAA-9 period completely (1985–
November 1988). In preparation for public release of the matchups
through the PO_DAAC at JPL, documentation was prepared describing
the compilation and composition of the distributed databases. The
matchups will be transferred to JPL in the immediate future.

Other activities involved the compilation of additional in situ data to
extend the matchups. Drifting buoy data were acquired from
Canada’s Marine Environmental Data Service (MEDS) for the period
January–October 1994 (the rest of 1994 is not available yet). An
entirely new set of buoy data was purchased from the United
Kingdom’s Meteorological Office. Data for these buoys encompass the
period 1991–1994. Although the 1991-93 data were not included in
the current version of the matchups, they may be used for
independent algorithm validation.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 29

Finally, the matchup databases were used to test a new approach to
the estimation of SST algorithm coefficients. This approach, currently
being reviewed by the SST Science Working Group, involves the
estimation of coefficients on a month-by-month basis, using a 5-
month set of matchups centered at the month in question. This
approach helps to lower the biases and increase in variability
associated with SST estimates after the explosion of Mount Pinatubo
(June 1991). Furthermore, low-frequency temporal trends such as
those detected for the NOAA-9 data set also seem to be reduced by
this approach.

B.4 DSP Support (M)

B.4.1 Testing:
None listed

B.4.2 Modifications/Additions to DSP:

SEAWIFS:
 ANLY8D: Change from 'cal.hdf' to new distribution file name
'SEAWIFS_CAL.TBL'.
Don't transpose arrays from get_l1a_record. GSFC changed routine to
match spec.
Version 2 of Gordon/Wang atmospheric algorithm. Minor corrections
to version 2 atmospheric algorithm.
 Add O_2 correction for SeaWIFS band 7.
Corrections/space savings to version 2 atmospheric algorithms.
Add new Gordon tau routine.
Collapse SeaWIFS library dependencies into one symbol.
Output flags_pc as 'percent input pixels' instead of 'pixels'.
Convert La to La(single scattering) for tau calculations.
Correct phi table lookup, must use abs(phi) to locate bounding
entries.
Document error in existing phi tables (missing 0-4.99 deg data).
Optimize repetitive calculations based on 'ss11'.
Correct for alpha/sgi builds. Add test program for gordon_tau_a.f.
Add diagnostic printing statements for OSF debugging.
Fix formation of aerosol/phase function file names.
Limit calculation of values that could overflow.
Add test programs for wang2 and gordon_tau routines.
Test programs for wang2 and gordon_tau routines.
Rename variables to clarify usage and add diagnostic print
statements.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 30

Convert to v4.2 library calling structure/ conventions.
Track interface changes to l2w routine.
Output radiances instead of counts for "bad" pixels.
Disable NaN debugging code.
Remove outdated routine (l2_calib.rat).

BIN Programs:
 SSBIN-HDF: Use tilt; both gsfc and miami quality determination; use
gsfc v4.1 i/o routines, don't use land mask (done in Anly).
 STBIN-HDF: Use tilt; both gsfc and miami quality determination;
changes for gsfc v4.1 i/o routines.
 SMAP9-HDF: Use tilt; both gsfc and miami quality determination;
changes for gsfc v4.1 i/o routines. Add parameter file; use v4.2
SeaWiFS I/O routines.

B.4.3 Problems fixed:
 QUORUM: Add curlin to a debug. Fix to work on VMS. Strengthen
missing line checks. Comment out diagnostic print statements.
 INGEST/LIB/GETPSEUDOTIME.C: Add EOS to message.
 INGEST/LIB/SCANFORSYNCH.RAT: Add debug message (ifdef'd).
 INGEST/LIB/READRECORD.RAT, SCANBACK.RAT: Look for next synch
pattern using scanback.
 INGEST/LIB/FFCSWITCH.RAT, READRECORD.RAT: Fix to work on
VMS.
 LOADDB: Declare variable used on VMS.
 QRMPACK: Fix to work on VMS. Write symbol PACK$FILENAME
with output file name.
 MIA2GIF: Re-initialize pointer used by GetPixel every invokation.
 Re-initialize more variables. Add decimate option.
 LIB/IO/VAX_EXTRACT.C: Handle VAX -> IBM PC convertion.
 PATHNLC: Use a coefficient file for all satellite/date combinations.
Make sure to read whole comment in coeffs file. Add new satellite
zenith angle and temperature test and use bit one in mask1.
 SHPSPH: Fix change of load commands to use input x,y instead of
y,x. Modify use of variables so "x" is element and "y" is scan.
 DBMAN: Put EOS after *.book and *.rec file names.
 PATHBIN: Add debugging code to check for NaN's (Not-a-Number).
Disable NaN debugging code. Skip bin calculation loop if pixel is not
supposed to be binned; fix some of the indenting. First part of left
edge/right edge binning changes. Use new SATZTEMP flag as part of
"satellite" test.
 SCRIPP: Strengthen missing line algorithm. Comment out diagnostic
print statements.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 31

 MACE2: Write out image start time instead of current time in dim
file data lines.

B.5 Direct Project Support

B.5.1 SeaWIFS (S)

B.5.1.1 1st Quarter Efforts

Received new ancillary data routines. Jim integrated into ANLY,
discovered problems with HDF routine when trying to access all 4
data fields, routine returned zero data. SeaWiFS resolved problems
and new routines successfully integrated.

Received new L1 and L2 HDF routines. Working with SeaWiFS
project to resolve difficulties in linking routines with ANLY.

3/23 Carder Telecon algorithm code to be available by end of march
- Steve (SKA)

3/17 Jim able to link test program with HDF routines, sue to continue
working with test program to verify L2 read and write with typical
ANLY files.

Jim is restructuring ANLY to separate program sections dealing with
calibration, navigation, I/O, atmospheric correction, and product
generation. This will allow program to use either CZCS or SeaWiFS
I/O and data.

Jim computed Rayleigh tables for all SeaWiFS bands, added ozone tau
coefficients, Rayleigh tau coefficients, and computed data day limits
for SeaWiFS project.

B.5.1.2 Outstanding items:
B.5.2 MODIS (M)

Modis Ocean integration: will split efforts between SDST and Miami
where I/O and toolkit functions will be integrated by SDST. Miami
will deliver Beta code using SeaWiFS modules and related I/O.

MODIS REPORT 1Q 94 NAS5-31362 V1.04 32

Test data sets will use SeaWiFS simulated data produced by W.
Gregg. Real SeaWiFS data will be substituted when available.

MODIS algorithms are represented by SeaWiFS coding. MOCEAN
team member will need to supply actual MODIS modules during the
next quarter to prepare for re-coding to EOS standards. SeaWiFS
code presently in RATFOR. MODIS algorithms will be coded in
Fortran-90. A beta compiler is available from DEC for the
DEC/ALPHA machines. Discussions are underway to acquire a similar
capability for the SGI machines.

Discussions in progress with SWAMP for gridding standards and data
day definition. Present EOS standard is to use ISSCP equal area
defined at 1.25 degree and then use equal angle sub-division for
higher resolution; data day definition uses 24 hour. The approach
defined by the MOCEAN team, e.g. use ISSCP for all resolutions and
use of spatial data day definition is being proposed as an alternative.

C.5.2 Continue timing tests with CZCS and SeaWiFS algorithms.

